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Introduction to Deep Learning

Deep Learning refers to Supervised Learning 
using an Artificial Neural Network, which has the 
following features:
o It is a network/graph of small computation units 

called artificial neurons, loosely modeled on the 
neurons in our brains, which send signals to 
each other.  The signals are floating-point 
numbers. 

o The network is typically organized in layers: 
the first layer is the input layer, the last is the 
output layer, and others are called hidden 
layers. 

o The input layer is array/vector of floats, and the 
output layer produces an array of floats. Thus, 
the network computes a function from vectors 
to vectors. 



Introduction to Deep Learning
Each neuron:

o Is connected to each neuron in the previous layer, 
and each connection has a weight or parameter 
which determines the strength of the signal 
(importance of this input to the neuron);  

o Performs logistic regression, using the sigmoid or 
other non-linear activation function. 

Gradient descent is used to learn the weights to 
minimize some cost function on the outputs.  



Introduction to Deep Learning
Features of artificial neural networks:

o Additional layers may perform data 
aggregation (e.g., convolution and 
pooling), dropout, or other kinds of 
data manipulation (e.g., softmax = 
transforming the output into a 
probability distribution).

o In a feedforward network, the network 
transforms an array of floats through 
the layers into another array of floats; 
in a sequence model, the inputs and 
outputs are sequences of vectors; and 
recurrent layers have cyclical 
connections which act as memory. 

o BERT, GPT, and other large networks 
learn to pay attention to complex 
patterns in the input sequence (e.g., 
words in a sentence). 



Introduction to Deep Learning

Weights or 
Parameters:

Inputs

Weighted sum:

Non-linear transform:

Output value
or Activation

A neuron is a higher-dimensional 
version of our logistic regression 
algorithm:
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One possible activation function f is the sigmoid from logistic 
regression:

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term
a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
X

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector
we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation
activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = s(z) =
1

1+ e�z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.

Introduction to Deep Learning

But non-linear activation functions besides sigmoid are more often used!
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Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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Hyperbolic Tangent (Tanh) Rectified Linear Unit (Relu)



Introduction to Deep Learning
A small amount of Linear Algebra can be used to compactly specify the 
logistic regression performed by a neuron.  

Inputs and weights/parameters are just vectors:

often written as tuples:



Introduction to Deep Learning
Then the neuron performs logistic regression by performing a dot product 
of inputs x and weights w, 

and then applying the activation function f :



Introduction to Deep Learning
A small but important detail:   Each neuron has a bias term, because they 
are simply doing logistic regression!

This connection has a weight (the value b) but is not
connected to the inputs; it serves to scale the
output, just as b does in linear regression.

A convenient way to encode this is to assume
that all input vectors to all neurons contain a 
constant 1.0 value:

 

1.0

wm = b



Introduction to Deep Learning
The simplest network is simply a row of such neurons, where

o Each has its own weight/parameter vector, but

o Shares the same input vector

x1        x2         x3        x4        x5        1.0 

a1           a2              a3           a4

Activations (outputs)

Neuron 1 Neuron 2 Neuron 3 Neuron 4

Inputs

The weights/parameters for a layer form 
a matrix:

The inputs and outputs for a layer are 
vectors:



a1           a2              a3           a4

x1        x2         x3        x4        x5        1.0 

1.0 

a1           a2              a3

Input “Layer”:

Hidden Layer:

Output Layer:

Notice that 
each neuron 
has a bias 
weight!

Introduction to Deep Learning
In a fully-connected 
feed-forward network 
(FFNN), each layer is 
connected to each 
neuron or input in the 
previous layer. 



Introduction to Deep Learning
Again, a little bit of linear algebra can make this a whole lot simpler:

Activations (outputs)

Inputs
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Our FFNN:



Classification Methods: Supervised ML

§ Input: 
§ a fixed set of classes  C = {c1, c2,…, cJ}
§ a randomly-permuted set of labeled documents 

(d1,c1),....,(dn,cn) split into 
§ a training set (d1,c1),....,(dm,c)   
§ a testing set dm+1,....,dn   (labels withheld)

§ Output: 
§ A classifier γ : d à c  trained the training set

§ The testing set with labels calculated by γ
§ Test results (confusion matrix, metrics, etc.)
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Classification: Binary, Multiclass, and Multilabel

In Binary Classification, we have 2 labels, and we must choose one; often this is phrased as 
“something” or “not something” (spam or ham, misinformation or not, etc.)

In Multiclass Classification, we have more than 2 labels, and our task is to assign a single 
label to each sample:

In Multilabel Classification, we have more than 2 labels, and our task is to assign any 
appropriate labels (not just one):



Classification Methods: Supervised ML

§ There are many different kinds of classifiers for 
labeled data 
§ Naïve Bayes

§ Logistic regression

§ Neural networks



All of these types of classification are typically implemented by having the 
network output a probability distribution on all the labels. 
To convert the output values into a distribution, we used a generalization of 
the sigmoid called the softmax:

softmax

p1      p2       p3

Classification with Deep Learning

Arbitrary floating point numbers. 

All in range [0..1] and sum to 1.0. 



§ For a vector z of dimensionality k, the softmax is:

§ Examples:

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s ). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

 
�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

 
�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1  i  k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

Introduction to Deep Learning

Softmax = a generalization of sigmoid which scales k 
numbers into a probability distribution.



Data Format for Deep Learning Classifier

The training set consists of a matrix of features X and a vector of labels Y. 

For each input observation x(i), we have a vector of features [x1, x2, ... , xn]. 

Feature j for input x(i) is xj, more precisely  xj(i). 

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

Feature Vectors Labels

x1   x2   x3                            ...               x19 x20     y

x6(3)

y(2)

X Y



Multiclass Classification
We will consider the MNIST database of handwritten digits: this is the “Hello World” of deep 
learning. 



Multiclass Classification
The MNIST digit database consists of 70,000 28x28 BW pixel images, stored as 28*28=784 
floating-point numbers in the range [0..1];  labels are integers 0..9: 

Note that the 
array is sparse, 
it is mostly 0's.

The 28*28 
matrix is 
flattened 
into a 1D 
vector of 
length 784. 

The label 9 is 
expanded into a 
one-hot vector:



Recall: Supervised Machine Learning Workflow 

Data 
Preparation

Raw 
Data

Curated 
   Data Results Y

Parameters
     Θ

X

XTesting

XTraining

Validation

ML
Algorithm

Training involves multiple phases of evaluation with a 
validation set to find optimal values for the hyperparameters. 

XValidation

Evaluation

Performance 
Metric 𝜇



Cost/Loss Function for Classification

One more detail!  What is the cost (loss) function used with the output of a 
classifier?

Hidden Layer: 128 neurons

[ x0  x1  x2 x3                       …                                    x783 ]Input “Layer”: 784 numbers:

Output Layer: 10 neurons

softmax

Network output: 

Label: 

Image Features

What is 
the cost?



Cost/Loss Function for Classification

We need to compare two probability distributions 

to measure how different they are. The function used to do this is called the 

Cross-Entropy Loss: 

One great feature of this cost function is that the derivative of the softmax plus 
CE Loss function is absurdly simple: it is just the difference of the two 
distributions:

Network output: 

Label: 



Recall: Supervised Machine Learning Workflow 

Data 
Preparation

Raw 
Data

Curated 
   Data Results Y

Parameters
     Θ

X

XTesting

XTraining

Validation

ML
Algorithm

Training involves multiple phases of evaluation with a 
validation set to find optimal values for the hyperparameters. 

XValidation

Evaluation

Performance 
Metric 𝜇


