
CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 10: Deep Learning: Artificial Neural Networks: Design and Implementation;
Workflow for Classification Tasks; Evaluating Classifiers

Introduction to Deep Learning

Deep Learning refers to Supervised Learning
using an Artificial Neural Network, which has the
following features:
o It is a network/graph of small computation units

called artificial neurons, loosely modeled on the
neurons in our brains, which send signals to
each other. The signals are floating-point
numbers.

o The network is typically organized in layers:
the first layer is the input layer, the last is the
output layer, and others are called hidden
layers.

o The input layer is array/vector of floats, and the
output layer produces an array of floats. Thus,
the network computes a function from vectors
to vectors.

Introduction to Deep Learning
Each neuron:

o Is connected to each neuron in the previous layer,
and each connection has a weight or parameter
which determines the strength of the signal
(importance of this input to the neuron);

o Performs logistic regression, using the sigmoid or
other non-linear activation function.

Gradient descent is used to learn the weights to
minimize some cost function on the outputs.

Introduction to Deep Learning
Features of artificial neural networks:

o Additional layers may perform data
aggregation (e.g., convolution and
pooling), dropout, or other kinds of
data manipulation (e.g., softmax =
transforming the output into a
probability distribution).

o In a feedforward network, the network
transforms an array of floats through
the layers into another array of floats;
in a sequence model, the inputs and
outputs are sequences of vectors; and
recurrent layers have cyclical
connections which act as memory.

o BERT, GPT, and other large networks
learn to pay attention to complex
patterns in the input sequence (e.g.,
words in a sentence).

Introduction to Deep Learning

Weights or
Parameters:

Inputs

Weighted sum:

Non-linear transform:

Output value
or Activation

A neuron is a higher-dimensional
version of our logistic regression
algorithm:

6

One possible activation function f is the sigmoid from logistic
regression:

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term
a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
X

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector
we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation
activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = s(z) =
1

1+ e�z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.

Introduction to Deep Learning

But non-linear activation functions besides sigmoid are more often used!

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = max(z,0) (7.6)

Hyperbolic Tangent (Tanh) Rectified Linear Unit (Relu)

Introduction to Deep Learning
A small amount of Linear Algebra can be used to compactly specify the
logistic regression performed by a neuron.

Inputs and weights/parameters are just vectors:

often written as tuples:

Introduction to Deep Learning
Then the neuron performs logistic regression by performing a dot product
of inputs x and weights w,

and then applying the activation function f :

Introduction to Deep Learning
A small but important detail: Each neuron has a bias term, because they
are simply doing logistic regression!

This connection has a weight (the value b) but is not
connected to the inputs; it serves to scale the
output, just as b does in linear regression.

A convenient way to encode this is to assume
that all input vectors to all neurons contain a
constant 1.0 value:

1.0

wm = b

Introduction to Deep Learning
The simplest network is simply a row of such neurons, where

o Each has its own weight/parameter vector, but

o Shares the same input vector

x1 x2 x3 x4 x5 1.0

a1 a2 a3 a4

Activations (outputs)

Neuron 1 Neuron 2 Neuron 3 Neuron 4

Inputs

The weights/parameters for a layer form
a matrix:

The inputs and outputs for a layer are
vectors:

a1 a2 a3 a4

x1 x2 x3 x4 x5 1.0

1.0

a1 a2 a3

Input “Layer”:

Hidden Layer:

Output Layer:

Notice that
each neuron
has a bias
weight!

Introduction to Deep Learning
In a fully-connected
feed-forward network
(FFNN), each layer is
connected to each
neuron or input in the
previous layer.

Introduction to Deep Learning
Again, a little bit of linear algebra can make this a whole lot simpler:

Activations (outputs)

Inputs

Introduction to Deep Learning

Our FFNN:

Classification Methods: Supervised ML

§ Input:
§ a fixed set of classes C = {c1, c2,…, cJ}
§ a randomly-permuted set of labeled documents

(d1,c1),....,(dn,cn) split into
§ a training set (d1,c1),....,(dm,c)
§ a testing set dm+1,....,dn (labels withheld)

§ Output:
§ A classifier γ : d à c trained the training set

§ The testing set with labels calculated by γ
§ Test results (confusion matrix, metrics, etc.)

14

Classification: Binary, Multiclass, and Multilabel

In Binary Classification, we have 2 labels, and we must choose one; often this is phrased as
“something” or “not something” (spam or ham, misinformation or not, etc.)

In Multiclass Classification, we have more than 2 labels, and our task is to assign a single
label to each sample:

In Multilabel Classification, we have more than 2 labels, and our task is to assign any
appropriate labels (not just one):

Classification Methods: Supervised ML

§ There are many different kinds of classifiers for
labeled data
§ Naïve Bayes

§ Logistic regression

§ Neural networks

All of these types of classification are typically implemented by having the
network output a probability distribution on all the labels.
To convert the output values into a distribution, we used a generalization of
the sigmoid called the softmax:

softmax

p1 p2 p3

Classification with Deep Learning

Arbitrary floating point numbers.

All in range [0..1] and sum to 1.0.

§ For a vector z of dimensionality k, the softmax is:

§ Examples:

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1 i k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

Introduction to Deep Learning

Softmax = a generalization of sigmoid which scales k
numbers into a probability distribution.

Data Format for Deep Learning Classifier

The training set consists of a matrix of features X and a vector of labels Y.

For each input observation x(i), we have a vector of features [x1, x2, ... , xn].

Feature j for input x(i) is xj, more precisely xj(i).

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

Feature Vectors Labels

x1 x2 x3 ... x19 x20 y

x6(3)

y(2)

X Y

Multiclass Classification
We will consider the MNIST database of handwritten digits: this is the “Hello World” of deep
learning.

Multiclass Classification
The MNIST digit database consists of 70,000 28x28 BW pixel images, stored as 28*28=784
floating-point numbers in the range [0..1]; labels are integers 0..9:

Note that the
array is sparse,
it is mostly 0's.

The 28*28
matrix is
flattened
into a 1D
vector of
length 784.

The label 9 is
expanded into a
one-hot vector:

Recall: Supervised Machine Learning Workflow

Data
Preparation

Raw
Data

Curated
 Data Results Y

Parameters
 Θ

X

XTesting

XTraining

Validation

ML
Algorithm

Training involves multiple phases of evaluation with a
validation set to find optimal values for the hyperparameters.

XValidation

Evaluation

Performance
Metric 𝜇

Cost/Loss Function for Classification

One more detail! What is the cost (loss) function used with the output of a
classifier?

Hidden Layer: 128 neurons

[x0 x1 x2 x3 … x783]Input “Layer”: 784 numbers:

Output Layer: 10 neurons

softmax

Network output:

Label:

Image Features

What is
the cost?

Cost/Loss Function for Classification

We need to compare two probability distributions

to measure how different they are. The function used to do this is called the

Cross-Entropy Loss:

One great feature of this cost function is that the derivative of the softmax plus
CE Loss function is absurdly simple: it is just the difference of the two
distributions:

Network output:

Label:

Recall: Supervised Machine Learning Workflow

Data
Preparation

Raw
Data

Curated
 Data Results Y

Parameters
 Θ

X

XTesting

XTraining

Validation

ML
Algorithm

Training involves multiple phases of evaluation with a
validation set to find optimal values for the hyperparameters.

XValidation

Evaluation

Performance
Metric 𝜇

